

PII: S0957-4166(96)00500-9

Asymmetric construction of benzylic quaternary carbons by lipase-mediated enantioselective transesterification of prochiral α,α -disubstituted 1,3-propanediols †

Antoine Fadel * and Philippe Arzel

Laboratoire des Carbocycles (Associé au CNRS), I.C.M.O., Bât. 420, Université de Paris-Sud, 91405 Orsay, France

Abstract: The asymmetric differentiation by lipase-catalysed transesterification of prochiral α,α -disubstituted 1,3-propanediols **5** and **11** was accomplished in good enantiomeric excess and high chemical yield. The absolute configuration of the corresponding monoacetates (+)-**2a** and (-)-**12a** were determined by conversion into known key intermediates used in the synthesis of (-)-aphanorphine and (+)-eptazocine. © 1997 Elsevier Science Ltd. All rights reserved.

The enantiomerically pure disubstituted 3-acetoxypropanols 1a are attractive starting materials for the synthesis of natural products, 1 such as sesquiterpenes and alkaloids. 2 In contrast, to a largely developed transesterification of prochiral 2-substituted 1,3-propanediol, 3 few examples of enantioselective enzymatic transesterification of prochiral 2,2-disubstituted 1,3-propanediols have been reported in the literature. Poor to acceptable enantiomeric excesses (0–60% ee) were obtained. 4

Several approaches to prepare (R)-2 as well as ent-2 from the prochiral malonate 3 by an enantioselective enzymatic hydrolysis into the acid ester 4 followed by selective reduction, have already been described. Both enantiomers of 2 have been transformed into useful intermediates used in the synthesis of benzomorphanes, and constituted better precursors than the acid ester 4 in such syntheses.

Much attention has been focused on enzyme-catalysed processes in organic solvents.⁵ Following this, we wished to find an alternative to our previously reported procedures² to convert the prochiral diol 5 into a chiral intermediate by transesterification. This diol was acylated with different lipases in organic solvents. Our results are reported in Table 1.

Diol 5 was prepared by reduction (88%) with LiAlH₄ of the corresponding diester 3.² When the diol 5 was treated in a mixture of anhydrous t-butylmethyl ether (TBME) at ambient temperature for

[†] Part of this study was previously communicated at the Organic Chemistry Symposia: at La Londe-les-Maures (GECO, Aug. 1996), and at Palaiseau (SFC, Sept. 1995) (France).

^{*} Corresponding author. Fax: +33 (01) 69 15 62 78; Email: antfadel@icmo.u-psud.fr

7

entry	lipase	acyl donor	time	сопу.%	product a	yield, %	[α] _D	ee, % ^b	abs. conf.	6 %
1	PSL/HSC	≯ OAc	4d	95	2a	85.5	+12.7	71	(<i>R</i>)	5
2	PSL/HSC	→ OAC	4d	6 5.5	2a	47.5	+11.9	64	(<i>R</i>)	12.5
3	PSL/HSC	D ₂ CC₅H ₁₁	25d	35	2b	34	+7.1	59	(<i>R</i>)	-
4	AKL	OAc OAC	7d	16	2a	16	+6.1	42	(<i>R</i>)	-
		.			2a	NR	-	-	_	-

52

20

rac

(R)

25

25

Table 1. Enzymatic acylation of diol 5

a) 2a : $R = COCH_3$. 2b : $R = COC_5H_{11}$. b) see ref. 8. c) iPr_2O instead of TBME.

4 days with 2 equivalents of isopropenyl acetate in the presence of lipase from *Pseudomonas cepacia* immobilised on Hyflo Super Cell (PSL/HSC),⁶ the starting material was completely converted into the monoacetate **2a** and a small amount of diacetate **6** (entry 1).

The desired monoacetate 2a was isolated in 85.5% yield with an enantiomeric excess⁷ of 71%. With vinyl acetate or isopropenyl hexanoate (entries 2,3), the monoesters 2a and 2b were obtained in lower ee's. Entries 4 and 5 showed that utilisation of the lipase from *Pseudomonas fluorescens* (AKL) or lipase from *Candida cylindracea* over HSC (CCL/HSC) did not improve the yield nor the ee. Comparison of entries 1 and 7 showed that the *t*-butylmethyl ether (TBME) was the best solvent. The absolute configuration of monoacetate 2a was determined by conversion of (+)-2a (71% ee) into the known alcohol 7, by protection of the alcohol function (TBDMSCl, DMAP, CH₂Cl₂, rt, 12 h, 92% yield) and subsequent hydrolysis of the acetate (K₂CO₃, MeOH, rt, 3h, 90%); $[\alpha]_D^{20} + 2.1$ (CHCl₃), $[\text{lit.}^2, [\alpha]_D^{20} + 2.8$ (CHCl₃) for the (S) isomer].

In addition, we found that the enzymatic transesterification of diacetate 6a into monoacetate 2a with PSL/HSC or porcine pancreatic lipase (PPL) in the presence of n-propanol did not work. Even after 15 days, only starting material was recovered. With the more activated diester 6c transesterification took place, however the resulting monoester 2c was found to be racemic. We can explain this last result by a chemical rather than an enzymatic reaction.

The encouraging result obtained in the preparation of monoacetate 2a (71% ee, Table 1), prompted us to investigate the transesterification of diol 11 which was easily prepared from the commercially available 3-methoxyphenylacetic acid 8a.

Table 2. Acylation of diol 11 with various lipases

entry	lipase	acyl donor	solvent	time	conv.%	product ⁶	yield %	[α] _D	ee%b	abs. conf.	13 %
1	CAL	J OAc	TBME	3.5d	100	12a	94	+7.2	75	(<i>S</i>)	2
2	CAL	≯ OAc	toluene	7d	96	12 a	94	-	42.3	(<i>S</i>)	4
3	CAL	→ OAc	hexane	10d	54	12 a	50	-	32	(<i>S</i>)	2
4	CAL	OAc	TBME	27h	100	12a	94	+6.9	70	(<i>S</i>)	4
5	CAL	A O₂CC₅H₁1	ТВМЕ	3.5d	77	12b	60	+1.9	50	(<i>S</i>)	-
6	CCL	OAc	TBME	11d	33	12a	30.5	-	62	(<i>R</i>)	2
7	PSL	✓ OAc	TBME	15d	22	12a	21.3	-6	65	(<i>R</i>)	6°
8	PSL / HSC	OAc	TBME	4d	100	12a	86	-	85	(<i>R</i>)	-
9	PSL / HSC,Et₃N	OAc	TBME	5d	95	12a	89	-9.6	93.2	(<i>R</i>)	3 ^c
10	PSL / HSC	✓ OAc	CH ₃ CN	27d	28	12a	26	-	91	(<i>R</i>)	-
11	PSL / HSC,Et ₃ N	✓ OAc	i-Pr ₂ O	7d	85	12a	40	-	81	(R)	20 ^c
12	PSL/HSC	O2CC2H5	TBME	5d	98	12c	63	-	64	(<i>R</i>)	2
13	PSL/HSC	→ OAc	TBME	7d	86	12a	84	-	70	(<i>R</i>)	-
14	PSL / HSC,5eq	F₃C [®] O₂CC₃H ₇	TBME	7d	51	12d	51	-6.8	83.8	(<i>F</i> I)	-

a) 12a : R = COCH₃: 12b : R = COC₅H₁₁: 12c : R = COC₂H₅: 12d : R = COC₃H₇. b) see ref. 8. c) R'-O-CH-(CH₃)O-COCH₃ was formed by simple addition of alcohol on the double bond of vinyl acetate.

8a:
$$R = H$$
8b: $R = CH_3$

NaH, DMF

O Br

O CO₂Me

1) pTsOH cat. C₆H₆ rfix

85%

2) LDA, THF, CICO₂Me

93%

10

The methyl ester **8b** was obtained in 96% yield by refluxing the acid **8a** in acidic methanol for 5 h. Subsequent treatment of sodium enolate of ester **8b** in DMF with 2-(2-bromoethyl)-1,3-dioxolane⁹ led to the dioxolane **9** in 92% yield. Cyclisation of this dioxolane **9** (C_6H_6 reflux, p-TsOH cat. 85%) followed by alkylation of the resulting dihydronaphthyl ester (LDA, then ClCOOMe, -78° C, 93%) gave the methyl diester **10** with 78% overall yield. Finally, reduction of diester **10** with LiAlH₄ in ether at reflux gave the diol **11** with 82% yield.

The prochiral diol 11 was converted into the monoester 12 by transesterification with acyl donors catalysed by various lipases⁴ in various organic solvents. The results are shown in Table 2.

With lipase from *Candida antarctica* (CAL), TBME in the presence of isopropenyl acetate was found to be the best mixture to synthesise (S)-12a (entry 1).

On the other hand for the preparation of the (R)-12a enantiomer, better results were obtained using PSL over HSC in the presence of a small amount of triethylamine¹¹ (entry 9). Other solvents such

as CH₃CN or *i*Pr₂O were less interesting. Comparison of entries 8, 9 showed the influence of the triethylamine. The decrease of the ee reported in the entry 8, probably comes from slight racemisaton due to the acidic medium.¹²

The absolute configuration of (-)-12 was confirmed by its conversion into the known tetralinic alcohol (R)-14 (94% ee), by tosylation (TsCl, Et₃N, 96%) and subsequent reduction (LiAlH₄, Et₂O, 58%).

This resulting alcohol 14 was found to have a rotation of $[\alpha]_D^{20}+26.4^{13}$ (c 1, CHCl₃, 94%ee) and the sign of the specific rotation was reported to be (S)-(-) for its antipode. Thus the alcohol (+)-14 should have the (R) configuration, consequently (-)-12a have also the (R) configuration.

Here also the enzymatic transesterification of diacetate 13 to monoacetate 12 with PSL/HSC, or PPL in the presence of *n*-propanol did not work, even after 10 days. Only, starting material was recovered.

In summary, for the first time, a rapid route for the synthesis of chiral benzylic quaternary centres by enantioselective enzymatic transesterification has been developed. The resulting monoacetate, obtained with good to excellent enantiomeric excesses, constituted key intermediates in the syntheses of (–)-aphanorphine and (+)-eptazocine. The synthesis of such alkaloids from these chiral intermediates will be reported in due course.

Experimental section

The general experimental procedures and the analytical instruments employed have been described in detail in a previous paper. ^{1d} Enantiomeric excess were also performed on a GC (Fisons 9130) chiral column Cydex B (SGE) (25 m, 140°C, 1 bar). Tested lipases were described as follows: lipase from Candida cylindracea (CCL, Sigma), lipase CCL was also immobilised on Hyflo Super Cell (CCL/HSC) according to ref.⁶. Lipase from Candida antarctica SP435L (CAL, immobilised on a macroporous acrylic resin, Novo Nordisk, Denmark), lipase from Pseudomonas cepacia (PSL, Amano), Lipase PS was also immobilised on Hyflo Super Cell (PSL/HSC) according to ref.⁶. Lipase from Pseudomonas fluorescens (AKL, Amano), lipase from porcine pancreas (PPL, Crude, Sigma).

2-(3-Methoxyphenyl)-2-methylpropane-1,3-diol 5

A solution of dimethyl malonate 3^2 (10.08 g, 40 mmol) in ether (100 mL), was added dropwise to a suspension of lithium aluminum hydride (2.28 g, 60 mmol, 1.5 eq) in ether (200 mL). The resulting gentle reflux of ether was maintained until complete addition. The solution was heated at reflux for an additional time 6 hours. The mixture was then cooled to 0°C and hydrolysed with wet sodium sulphate. Stirring was continued until complete hydrolysis (solution became clear). The ethereal layer was filtered and the cake was washed with ether (3x100 mL). After concentration the residue was purified by chromatography on silica gel (elution with ethyl acetate/petroleum ether: $30/70 \rightarrow 50/50$) to yield 6.9 g (88%) as a solid. Recrystallised from ether–hexane gave 6.74 g (in 2 crops) of pure crystals of 5 (86%): mp 88.1°C. *IR* (*CHCl*₃) 3680, 3630, 1615, 1605, 1585, 1040 cm⁻¹; ¹*H NMR* (*CDCl*₃) δ 7.38–7.26 (m, H), 7.10–6.98 (m, 2H), 6.86–6.77 (m, H), 3.91 (AB part of ABX system, Δv_{AB} =30 Hz, 3.97 (A, J_{AB} =10.5, J_{AX} =6.5 Hz, 2H), 3.85 (B, J_{AB} =10.5, J_{BX} =6.5 Hz, 2H), 3.83 (s, 3H), 1.97 (X part, J_{AX} =6.5 Hz, 2H_{alcohol}), 1.32 (s, 3H); ¹³C *NMR* (*CDCl*₃) δ [6 arom.C, 159.7 (s), 144.8 (s), 129.6 (d), 118.9 (d), 113.4 (d), 111.2 (d)], 69.8 (2t), 55.1 (q), 44.5 (s), 20.7 (q); *MS* (*EI*): 197 (M⁺+1, 5), 196 (M⁺, 33), *148* (100), 123 (46), 121 (21), 108 (38), 105 (27), 103 (21), 91 (76), 79 (22), 78 (21), 77 (46), 57 (44). *Anal. calcd for C*₁₁H₁₆O₃: C, 67.32; H, 8.22. Found: C, 67.57; H, 8.28.

General procedure A: enzymatic hydrolysis

To 5 mmol of diol 5 in dry 20 mL of t-butylmethyl ether (TBME) was added enzyme (w/w of substrate) and vinyl acetate or other acyl donors (10 mmol). The reaction mixture stirred at rt under argon, was monitored by TLC. When the reaction was complete the solvent was filtered off and the cake was washed with AcOEt (3x30 mL). The concentration of solvent and chromatography gave the expected product with good yield. The recovered enzyme was recycled.

(R)-(+)-3-Acetoxy-2-(3-methoxyphenyl)-2-methyl-1-propanol 2a

Data of diacetate 6. ¹H NMR (CDCl₃) δ 7.36–7.21 (m, 1H), 7.00–6.88 (m, 2H), 6.88–6.77 (m, 1H), 4.30 (s, 4H), 3.82 (s, 3H), 2.05 (s, 6H), 1.39 (s, 3H).

(R)-(+)-2-(3-Methoxyphenyl)-2-methyl-3-(pentylcarbonyloxymethyl)-1-propanol 2b

Prepared following the same procedure from 392 mg (2 mmol) of diol 5, isopropenyl hexanoate (625 mg, 4 mmol) and PSL/HSC (400 mg) in 20 mL of TBME. After stirring for 25 days at rt, the purification by flash chromatography led to 200 mg (34%) of **2b** ([α]_D²⁰+7.1 (c=1, CHCl₃), ee 59%) and 155 mg (40%) of starting diol 5. ¹H NMR (CDCl₃) δ : 7.38–7.23 (m, 1H), 7.04–6.87 (m, 2H), 6.87–6.76 (m, 1H), 4.35 (s, 2H), 3.83 (s, 3H), 3.74 (d, J=6.8 Hz, 2H), 2.33 (t, J=4.7 Hz, 2H), 1.94 (t, J=6.8 Hz, OH), 1.68–1.50 (m, 2H), 1.40–1.18 (m, 4H), 1.35 (s, 3H), 0.88 (t, J=6.5 Hz, 3H); MS (EI): 294 (M⁺, 3), 149 (12), 148 (100), 121 (12), 99 (37), 71 (16); HRMS calcd for $C_{17}H_{26}O_4$: 294.1831, found: 294.1823.

(S)-(+)-3-(tert-Butyldimethylsiloxy)-2-(3-methoxyphenyl)-2-methyl-1-propanol 7

To a stirred solution of alcohol (+)-2a (708 mg, 3 mmol, 71% ee) and DMAP (550 mg, 4.5 mmol) in CH₂Cl₂ (20 mL), was added a solution of TBDMSCl (900 mg, 6 mmol) in 10 mL of CH₂Cl₂. After stirring at rt for 10 h and usual workup, the residue was purified by chromatography (5/95, AcOET:hexane) to furnish 970 mg (92%) of (*S*)-1-acetoxy-3-(*tert*-butyldimethylsiloxy)-2-(3-methoxyphenyl)-2-methylpropane. Its ^{I}H NMR data (CDCl₃) δ 7.34–7.20 (m, 1H), 7.00–6.90 (m, 2H), 6.82–6.74 (m, 1H), 4.32 (AB system, Δv_{AB} =21 Hz, J_{AB} =11 Hz, $2H_{acetoxy}$), 3.81 (s, 3H), 3.69 (AB system, Δv_{AB} =30 Hz, J_{AB} =10 Hz, 2H C \underline{H}_2 -Si), 2.02 (s, 3H), 1.33 (s, 3H), 0.87 (s, 9H), -0.01 (s, 3H), -0.02 (s, 3H).

The protected alcohol was then dissolved in a suspension of $K_2CO_3^8$ (830 mg, 6 mmol) in 20 mL of MeOH. The mixture was stirred at room temperature for 2 h. Addition of 5 mL of a saturated solution of NH₄Cl and extraction with ether (3x100 mL). The combined organic layers was washed with 2 mL of brine, dried over MgSO₄ and filtered. After concentration of solvent a light yellow oil was obtained 860 mg (quantitative yield) of 7, ([α]_D²⁰+2.1 (c=1, CHCl₃), ee 70%) as shown from the ee value, these two reactions occur without racemisation. [lit.², [α]_D²⁰+2.8 (c=1, CHCl₃) for the (S)-enantiomer, 94% ee]. The spectral data (S)-(+)-7 are identical with these reported.²

1,3-Bis(chloroacetoxy)-2-(3-methoxyphenyl)-2-methylpropane 6c

To a stirred solution of 392 mg (2 mmol) of diol **5** and 540 mg (4.4 mmol) in 20 mL of ether, was added dropwise at 0°C a solution of chloroacetic anhydride (750 mg, 4.4 mmol) in 10 mL of ether. The reaction was complete within 2 h as shown by TLC. The mixture was filtered through a pad of Celite and the precipitate washed with ether (10 mL). After concentration the residue was purified by chromatography on silica gel (eluent: AcOEt/hexane/CHCl₃: 5/95/0.5) to give 680 mg (97.2%). ^{1}H NMR (CDCl₃) δ 7.36–7.25 (m, 1H), 7.00–6.78 (m, 3H), 4.43 (s, 4H), 4.05 (s, 4H, CH₂-Cl), 3.84 (s, 3H), 1.45 (s, 3H); ^{13}C NMR (CDCl₃) δ 166,7 (2s), [6 arom. C, 159.3 (s), 142.4 (s), 129.2 (d), 118.1 (d), 112.5 (d), 111.5 (d)], 69.2 (2t), 54.8 (q), 41.6 (s), 40.4 (2t), 20.3 (q); HRMS calcd for $C_{15}H_{18}Cl_2O_5$: 348.0531, found: 348.0542.

3-Chloroacetoxy-2-(3-methoxyphenyl)-2-methyl-1-propanol 2c

A mixture of dichloroacetate **6c** (349 mg, 1 mmol), PSL/HSC (300 mg), dry isopropanol (1 mL) in 20 mL of TBME was stirred at rt for 15 days. The solution was filtered and the precipitate was washed with ether (3x20 mL). The filtrates concentrated and the resulting oil was purified by flash chromatography to furnish 85 mg (31%) of monochloroacetate **2c**, 43 mg (22%) of diol **5** and 157 mg (45%) of starting dichloroacetate **6c**. The enantiomeric excess of **2c** was determined to be ($\approx 0\%$ ee) and its $[\alpha]_D^{20}+0.5$ (c=1, CHCl₃). ¹H NMR (CDCl₃) δ 7.36–7.23 (m, 1H), 7.00–6.90 (m, 2H), 6.90–6.79 (m, 1H), 4.47 (s, 2H), 4.07 (s, 2H, CH₂Cl), 3.84 (s, 3H), 3.79 (s, 2H), 1.55 (br, s, 0H), 1.49 (s, 3H); MS (EI): 274 (M⁺, 4), 272 (M⁺, 13), 165 (15), 149 (15), 148 (100), 147 (18), 121 (14), 108 (13), 91 (36), 79 (18), 77 (44); HRMS calcd for $C_{13}H_{17}Cl_1O_4$: 272.0815, found: 272.0822.

rac-Methyl 4-(1,3-dioxolanyl)-2-(3-methoxyphenyl)butanoate 9

To a sodium hydride 50% in oil (1.2 eq, 3.6 mmol, 1.74 g) washed with dry hexane, was added dry DMF (50 mL) and the ester $8b^2$ (5.22 g, 29 mmol). After stirring for 1 h at room temperature, 2-(2-bromoethyl)-1,3-dioxolane (1.2 eq, 6.30 g, 4.09 mL, 34.8 mmol) was added and the solution was stirred for a further 10 hours. The solution was then partitioned between sat. NaHCO₃ (50 mL) and ethyl acetate (100 mL). The aqueous layer was washed with AcOEt (3x100 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO₄. After concentration the residue was purified by flash chromatography (AcOEt/hexane: 2/8) to furnish 7.47 g (92%) as a colourless oil of rac-9. ¹H NMR (CDCl₃) δ 7.32–7.18 (m, 1H), 6.93–6.75 (m, 3H), 4.86 (t, J=4.6 Hz, 1H), 4.03–3.80 (m, 4H), 3.80 (s, 3H), 3.67 (s, 3H), 3.59 (t, J=7.9 Hz, 1H), 2.30–2.07 (m, 1H), 2.02–1.82 (m, 1H), 1.75–1.50 (m, 2H). The spectral data are identical with those very recently reported. ¹⁰

Dimethyl 7-methoxy-1,2-dihydronaphthalene-1,1-dicarboxylate 10

A solution of rac-**9a** (7 g, 25 mmol) and *p*-toluenesulfonic acid (cat. 200 mg) in benzene (150 mL) was reflux for 12 hours. Usual workup and purification by flash chromatography (AcOEt/hexane: 1/9) furnished 3.27 g (60%) of cyclic monoester intermediate and 2.7 g (38.5%) of starting material which was retreated in the same conditions afforded 1.365 g of monoester. Thus 4.635 g of the racmethyl 7-methoxy-1,2-dihydronaphthalene-1-carboxylate were obtained with 85% overall yield. *IR* (neat) 1745, 1620, 1580, 1510, 1260 cm⁻¹; ^{I}H NMR (CDCl₃) δ 7.05–6.95 (m, 1H), 6.83–6.70 (m, 2H), 6.43 (br, J=9.5 Hz, 1H), 5.93–5.81 (m, 1H), 3.79 (s, 3H), 3.76 (t, J=6.5 Hz, 1H), 3.69 (s, 3H), 2.80 (m, A part of ABCD syst. Δv_{AB} =65.8 Hz, J_{AB} =17 Hz, 1H), 2.54 (m, B part of ABCD syst. 1H); ^{I3}C NMR (CDCl₃) δ 173.8 (s), [6 arom.C, 158.6 (s), 133.1 (s), 127.2 (d), 126.6 (s), 114.6 (s), 112.1 (d)], 126.8 (d, C=C), 123.6 (d, C=C), 55.1 (q), 52.0 (q), 43.6 (d), 25.8 (t).

To a solution of lithium diisopropylamide, [prepared from diisopropylamine 3.1 g (4.3 mL, 30.75 mmol, 1.5 eq) and n-BuLi (18.5 mL, 28.7 mmol, 1.4 eq, 1.55M soln)] in THF (50 mL), was added at -78°C the monoester intermediate (4.47 g, 20.5 mmol). The reaction mixture was stirred for 30 min from -78°C $\rightarrow -50$ °C. The methyl chloroformate (2.52 g, 2.06 mL, 1.3 eq, 26.65 mmol) was

added at -78° C and the solution was allowed to stir for 30 min. Usual workup and purification by flash chromatography (AcOEt/hexane: 1/9 to 2/9) gave 5.26 g (93%) of a colourless crystals of **10**. mp 55.8°C. *IR (neat)* 2970, 1745, 1620, 1580, 1510, 1260 cm⁻¹; ^{I}H *NMR (CDCl₃)* δ 7.05 (d, J=7.9 Hz, 1H), 6.83 (d,d, J=7.9, 3.0 Hz, 1H), 6.73 (d, J=3 Hz, 1H), 6.45 (br, d, J=9.2 Hz, 1H), 5.88 (m, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 3.01 (dd, J=4.4, 1.8 Hz, 2H); ^{I3}C *NMR (CDCl₃)* δ 171.3 (2s), [6 arom.C, 158.7 (s), 132.6 (s), 127.4 (d), 126.3 (s), 114.3 (d), 112.5 (d)], 127.2 (d), 122.4(d), 59.2 (s), 55.2 (q), 52.9 (2q), 30.6 (d).

1,1-Di(hydroxymethyl)-7-methoxy-1,2-dihydronaphthalene 11

Following the procedure used above to obtain **5**. The diol **11** was prepared from diester **10** (4.97 g, 18 mmol), LiAlH₄ (1.03 g, 27 mmol) in ether at reflux, 3.25 g (82%) was obtained as a colourless crystals of **11** (recrystallised from Et₂O/hexane); mp: 123.8°C. *IR* (*CHCl*₃) 3630, 3510, 2880, 2840, 1610, 1570, 1495, 1210 cm⁻¹; ${}^{1}H$ *NMR* (*CDCl*₃) δ 7.05 (d, J=8.5 Hz, 1H), 7.00 (d, J=3.0 Hz, 1H), 6.75 (dd, J=8.5, 3.0 Hz, 1H), 6.38 (br, d, J=9.75 Hz, 1H), 5.90–5.76 (m, 1H), 4.00–3.73 (m, 4H), 3.83 (s, 3H), 2.42 (dd, J=5.0, 2.2 Hz, 2H), 2.10 (br, s, 2OH); ${}^{13}C$ *NMR* (*CDCl*₃) δ [6 arom.C, 159.0 (s), 137.5 (s), 128.1 (d), 127.4 (s), 112.7 (d), 111.2 (d)], 126.7 (d, C=C), 123.5 (d, C=C), 67.0 (2t), 55.3 (q), 43.3 (s), 27.8 (t); *MS* (*EI*): 221 (M⁺+1, 6), 220 (39), 172 (27), 171 (56), 160 (11), *159* (100), 145 (11), 144 (79), 123 (21), 128 (52), 127 (32), 116 (25), 115 (85), 91 (15); *HRMS* calcd for $C_{13}H_{16}O_3$: 220.1099, found: 220.1095, *Anal.* calcd for $C_{13}H_{16}O_3$: C, 70.89; H, 7.32. Found: C, 71.01; H, 7.25.

(R)-(-)-1-Acetoxymethyl-1-hydroxymethyl-7-methoxy-1,2-dihydronaphthalene 12a

Prepared following the general procedure A described above, from 1.1 g (5 mmol) of diol 11 and vinyl acetate (860 mg, 10 mmol) in the presence of PSL/HSC⁶ (1 g) in TBME (20 mL) and 60 μ l of Et₃N cat. After 5 days, the resulting mixture was purified by flash chromatography to furnish 1.165 g (89%) as a colourless oil of (R)-(-)-12a, ([α]_D²⁰ -9.6 (c=1, CHCl₃), ee=93.2%) and 45 mg (3%) of diacetate 13. *IR* (*neat*) 3460, 1745, 1610, 1575, 1245 cm⁻¹; ^{I}H *NMR* (*CDCl₃*) δ 7.08–6.96 (m, 2H), 6.76 (dd, J=9.0, 2.6 Hz, 1H), 6.40 (d, J=9.5 Hz, 1H), 5.81 (m, 1H), 4.31 (s, 3H), 3.82 (s, 3H), 3.72 (m, AB syst. 2H), 2.45–2.28 (m, 2H), 2.10 (s, 3H); ^{I3}C *NMR* (*CDCl₃*) δ 171.5 (s), [6 arom.C, 159.0 (s), 136.9 (s), 128.1 (d), 127.2 (s), 112.9 (d), 111.5 (d)], 126.8 (d, C=C), 122.9 (d, C=C), 65.9 (t), 64.8 (t), 55.3 (q), 42.6 (s), 28.1 (t), 20.9 (q); *MS* (*EI*): 263 (M⁺+1, 3.6), 262 (M⁺, 21), 172 (29), 171 (100), 159 (17), 144 (19), 129 (13), 128 (32), 127 (15), 115 (35), 43 (94); *HRMS* calcd for $C_{15}H_{18}O_4$: 262.1205, found: 262.1181.

Data of 13. IR (neat) 1750, 1615, 1585, 1380, 1240, 1042 cm⁻¹; ${}^{I}HNMR$ (CDCl₃) δ 7.05 (d, J=8.4 Hz, 1H), 6.87 (d, J=2.5 Hz, 1H), 6.77 (dd, J=8.4, 2.5 Hz, 1H), 6.43 (br, d, J=9.7 Hz, 1H), 5.79 (m, 1H), 4.27 (m, like AB syst. 4H), 3.82 (s, 3H), 2.46–2.32 (s, 6H); MS (EI): 305 (M⁺+1, 4.5), 304 (M⁺, 16), 185 (14), 184 (62), 172 (13), 171 (64), 128 (21), 115 (15), 43 (100); HRMS calcd for $C_{17}H_{20}O_5$: 304.1310, found: 304.1297.

(S)-(+)-1-Acetoxymethyl-1-hydroxymethyl-7-methoxy-1,2-dihydronaphthalene 12a

Prepared following the general procedure A described above, from 0.44 g (2 mmol) of diol 11 and isopropenyl acetate (0.4 g, 4 mmol) in the presence of lipase of *Candida antarctica* (SP435) (400 mg) in TBME (10 mL). After 3.5 days, the resulting mixture was purified by flash chromatography to afford 490 mg (94%) as a colourless oil of (S)-(+)-12a, ($[\alpha]_D^{20}+7.2$ (c=1, CHCl₃), ee=75%). All spectral data are identical with those of its enantiomer (R)-12a.

(R)-(-)-1-Hydroxymethyl-7-methoxy-1-propylcarbonyloxymethyl-1,2-dihydronaphthalene 12d

Prepared following the general procedure A, from 220 mg (1 mmol) of diol 11 and 2,2,2-trifluoroethyl butyrate ¹⁵ (340 mg, 2 mmol) in the presence of PSL/HSC (1 g) in TBME (8 mL) and 60 µl of cat. Et₃N. After 7 days, the purification gave 150 mg (51%) as a colourless oil of (R)-(-)-12d

 $([\alpha]_D^{20}-6.8 \text{ (c=1.07, CHCl}_3), \text{ ee=83.8\%})$ and 105 mg (47%) of starting diol **11**. ^{I}H NMR (CDCl}_3) δ 7.11–6.95 (m, 2H), 6.77 (dd, J=8.4, 2.5 Hz, 1H), 6.41 (br, d, J=9.5 Hz, 1H), 5.81 (m, 1H), 4.33 (s, 3H), 3.82 (s, 3H), 3.67–3.60 (m, 2H), 2.50–2.25 (m, 4H), 2.16–2.00 (br, s, OH), 1.80–1.55 (m, 2H), 0.95 (t, J=7.5 Hz, 3H); ^{I3}C NMR (CDCl}_3) δ 174.2 (s), [6 arom.C, 158.9 (s), 136.9 (s), 128.0 (d), 127.2 (s), 112.8 (d), 111.5 (d)], 126.8 (d, C=C), 122.9 (d, C=C), 65.7 (t), 64.7 (t), 55.2 (q), 42.7 (s), 36.2 (t), 28.0 (t), 18.4 (t), 13.6 (q); MS (EI): 291 (M⁺+1, 2.7), 290 (M⁺, 13), 202 (13), 172 (29), *I71* (100), 159 (13), 128 (20), 115 (21), 71 (33), 43 (38); *HRMS calcd for* $C_{17}H_{22}O_4$: 290.1518, found: 290.1502.

(R)-(+)-1-Hydroxymethyl-7-methoxy-1-methyl-1,2-dihydronaphthalene 14

To a solution of acetate (-)-12a (785 mg, 3 mmol, 94% ee), DMAP (365 mg, 3 mmol) and Et₃N (300 mg, 3 mmol) in CH₂Cl₂ (50 mL), was added TsCl (950 mg, 5 mmol). The mixture stirred at rt. The reaction was complete in 3 h as shown by TLC. Usual workup gave 1.3 g of crude product which was purified by flash chromatography to afford 1.175 g (94%) as viscous oil of pure (+)-1-acetoxymethyl-7-methoxy-1-tosyloxymethyl-1,2-dihydronaphthalene. *Spectral data*: [α]_D²⁰+12.3 (c=1, CHCl₃); ¹*H NMR (CDCl₃)* δ 7.73 (d, J=8.5 Hz, 2H), 7.33 (d, J=8.5 Hz, 2H), 7.04–6.95 (m, 1H), 6.79–6.70 (m, 2H), 6.35 (br, d, J=9.7 Hz, 1H), 5.69 (m, 1H), 4.25 (m, like AB syst., 2H), 4.13 (AB system, Δv_{AB} =19.5 Hz, J_{AB} =10 Hz, 2H), 3.78 (s, 3H), 2.46 (s, 3H), 2.40–2.32 (m, 2H), 1.99 (s, 3H); ¹³*C NMR (CDCl₃)* δ 170.6 (s), [12 arom. C, 159.0 (s), 144.8 (s), 134.8 (s), 132.5 (s), 129.9 (d), 129.8 (2d), 128.2 (d), 127.8 (2d), 112.6 (d), 112.0 (d)], 127.0 (d, C=C), 122.0 (d, C=C), 70.5 (t), 65.2 (t), 55.3 (q), 41.0 (s), 27.8 (t), 21.6 (q), 20.8 (q); *HRMS calcd for C*₂₂*H*₂₄*O*₆*S*: 416.1293, found: 416.1283.

A solution of (+)-tosylate (1.04 g, 2.5 mmol) in ether (30 mL) was added dropwise to a suspension of LiAlH₄ (380 mg, 10 mmol) in ether (50 mL). The mixture was stirred at rt for 30 min then heated at reflux for 2 h. Usual hydrolysis with wet Na₂SO₄, filtration and concentration gave 600 mg of crude residue which was purified by flash chromatography (AcOEt/petroleum ether, $10/90 \rightarrow 70/30$) to furnish 300 mg (58%) of pure alcohol (R)-(+)-14, ([α]_D²⁰+26.4 (c=1, CHCl₃), ¹³ (lit. [α]_D²⁰ -27.4 (c=1, CHCl₃) for its antipode (S)). ¹⁴ All spectral data were identical with those reported.

References

- (a) For asymmetric quaternary carbon centres see, Fuji, K. Chem. Rev. 1993, 93, 2037. (b) Fadel, A.; Garcia-Argote, S. Tetrahedron: Asymmetry 1996, 7, 1159. (c) Fadel, A.; Canet, J.-L.; Salaün, J. Synlett 1991, 60. (d) Canet, J.-L.; Fadel, A.; Salaün, J. J. Org. Chem. 1992, 57, 3463. (e) Fadel, A.; Canet, J.-L.; Salaün, J. Tetrahedron: Asymmetry 1993, 4, 27.
- 2. Fadel, A.; Arzel, Ph. Tetrahedron: Asymmetry 1995, 6, 893.
- 3. (a) For specialized books see: Poppe, L.; Novák, L. Selective Biocatalyis: a Synthetic Approach VCH: Weinheim 1992; for reviews see: (b) Boland, W.; Forössl, C.; Lorenz, M. Synthesis 1991, 1049. (c) Banfi, L.; Guanti, G. Synthesis 1993, 1029–1056. (d) Azerad, R. Bull. Soc. Chim. Fr. 1995, 132, 17. (e) Schoffers, E.; Golebiowski, A.; Johnson, C.R. Tetrahedron 1996, 52, 3769–3826 and references cited therein.
- (a) Green, F.R.III.; Olyslager, R.J.E. Eur. Patent. Appl. EP 280.232 (1988), CA 1989, 110, 37813h.
 (b) Ehler, J.; Seebach, D. Liebigs Ann. Chem. 1990, 379. (c) Suemune, H.; Harabe, T.; Xie, Z.F.; Sakai, K. Chem. Pharm. Bull. 1988, 36, 4337.
- 5. Therisod, M.; Klibanov, A.M. J. Am. Chem. Soc. 1986, 108, 5638 and references cited therein.
- 6. Bovara, R.; Carrera, G.; Ferrara, L.; Riva, S. Tetrahedron: Asymmetry 1991, 2, 931.
- 7. The enantiomeric excesses were determined by ¹H NMR in the presence of Eu(hfc)₃.
- 8. See ref. 4(a).
- 9. Alkylation of **8b** with 2-(2-bromoethyl)-1,3-dioxane and its transformation into **10** gave roughly the same yield.
- 10. Very recently the diester 10 was used to prepare the corresponding chiral acid ester according to refs 2 and 3 by enzymatic hydrolysis with PLE see, Hallinan, K.O.; Honda, T. *Tetrahedron* 1996, 51, 12211.

- 11. The addition of Et₃N greatly enhanced the reaction rate, see: Theil, F.; Ballschuh, S.; Schick; H.; Haupt, M.; Hafner, B.; Schwarz, S. Synthesis 1988, 540.
- 12. Under acidic conditions the (R)-(+)-2 underwent racemisation into (\pm) -2 by the 1,5-rearrangement of the acyl function.
- 13. Unfortunately an error in the specific rotation of the alcohol (R)-(+)-14 was reported by us (ref. 2 above), the value should be +28 and not +18.3 (c=1, CHCl₃).
- 14. Hulme, A.N.; Henry, S.S.; Meyers, A.J. J. Org. Chem. 1995, 60, 1265.
- 15. Allevi, P.; Ciuffreda, P.; Tarocco, G.; Anastasia, M. J. Org. Chem. 1996, 61, 4144.

(Received in UK 6 November 1996)